International OpenV\ S} :
Eindhoven; March 7th 2 23L1

: Dr._WoIfga ng Burger

sh Jksq
the database | rOJ

D

URGER _ Technology B

+43 664 8379528
wolfgong burger@wdb-tech.com

WHOAMI

x[!
&)

Wolfgang Burger
PhD in physics
30 years of experiences in the IT industry

Focussed on, but not limited to, OpenVMS, DB management and application
programming

Until 2019 HPE employee; Master of Technology

2019 Founding of the start-up company WDB Tech

Goal: SharkSQL development

SQL standard compliant distributed relational DBMS system

Easy-to-use with all features one would expect from an enterprise level
DBMS

Enhanced security and data protection features

Multi-Platform support — OpenVMS, Windows, Linux (future)
Performance, Performance & Performance ...

’ Advanced .
DataBase SharkSQL - the database project 2
BURGER Technology

Topics

e |
“ /7_‘

SQL compliancy

The ACID principle; facts, rumours and fake statements

Usability
What makes a DBMS easy to use — my thoughts

Cross DB and distributed transactions
SharkSQL GRID access — simple and easy to use

Security and data protection
SharkSQL’s enhanced features

Performance
Some benchmark numbers ...

SharkSQL Connectors/Interfaces

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

SQL compliancy

x[!
&)

Transactions are a core concept of relational DBMS

Transactions must adhere to the ACID-principle
A — Atomic

“All-or-nothing” principle; either all or not changes are persistently stored at
the end of a transaction.

C — Consistency

A transaction converts the database from one consistent state to another
consistent state.

| — Isolation

Isolation determines how restrictively data processed by a transaction are
isolated from being accessed by other concurrently executing transaction — we
will have a closer look on this topic ...

D — Durability

Durability means that committed data remains permanently stored regardless
of whether the RDBMS software is running or not, the server gets rebooted, or
in case of any other event or failure.

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

ACID - fake statements and rumours 5

“A Lost Update may occur if transactions are executed with
isolation level READ COMMITTED”

Original statement (German):
,Das Phanomen Lost Update2 kann auftreten, wenn das Isolationslevel READ COMMITTED verlangt wird“
[Burkhardt Renz, Professor fiir Informatik, TU Mittelhessen, Fachbereich MNI, Vorlesungskript “IsolationsLevel in SQL”, SS 2022]

Widespread assumption:

The isolation level SERIALIZABLE guarantees that the data is
consistent under all circumstances; in other words, with the
SERIALIZABLE isolation level you are on the safe side as far as
data consistency is concerned.

From the performance perspective optimistic concurrency
control is the superior concept (compared with pessimistic

concurrency control)

’ Advanced .
DataBase SharkSQL - the database project 5
BURGER Technology

SQL Standard — Isolation levels

1) PI (“Dirty read”™): SQL-transaction T modifies a row. SQL-transaction T2 then reads that row before T
performs a COMMIT. If T then performs a ROLLBACK. T2 will have read a row that was never commutted
and that may thus be considered to have never existed.

2) P2 (“Non-repeatable read”): SQL-transaction T reads a row. SQL-transaction T2 then modifies or deletes
that row and performs a COMMIT. If T then attempts to reread the row, it may receive the modified value
or discover that the row has been deleted.

3) P3(“Phantom™): SQL-transaction T] reads the set of rows N that satisfy some <search condition™>. SQL-
transaction T2 then executes SQL-statements that generate one or more rows that satisfy the <search con-
dition> used by SQL-transaction T1. If SQL-transaction TJ then repeats the mitial read with the same
<search condition™, it obtains a different collection of rows.

The four isolation levels guarantee that each SQL-transaction will be executed completely or not at all, and
that no updates will be lost. The isolation levels are different with respect to phenomena PI, P2, and P3. Table 8,
“SQL-transaction 1solation levels and the three phenomena™ specifies the phenomena that are possible and not
possible for a given isolation level.

Table 8 — SQL-transaction isolation levels and the three phenomena

Level P1 P2 P3
READ UNCOMMITTED | Possible Possible Possible
READ COMMITTED Not Possible Possible Possible

REPEATABLE READ Not Possible Not Possible Possible

SERIAIIZABIE Not Possible Not Possible Not Possible

DISONEC 2003 - Al rights reserved Concepts 117

Advanced .
DataBase SharkSQL - the database project
BURGER Technology

SQL Standard — Isolation levels M

Isolation level Lost updates Dirty reads Non-repeatable reads Phantoms

Read Uncommitted = don't occur may occur may occur may occur
Read Committed don't occur = don't occur may occur may occur
Repeatable Read don't occur = don't occur don't occur may occur
Serializable don't occur = don't occur don't occur don't occur

Advanced .
DataBase SharkSQL — the database project
BURGER Technology

Lost Update — some examples

get counter [42+1=43] setcounter=43 time
User 1 %

User 2 % ------------ RS
get counter [42 +1=43] set counter =43
Tabelle 1: Beispiel fir Dirty Write Tabelle 7: Beispiel fiir Lost Update
T Ty Saldo fiir Konto 1 T Ty Saldo fiir Konto 1
100 100

select Saldo
from Konto
where KtoNr = 1

update Konto
set Saldo = 200

where KtoNr = 1 200 T liest den Wert 100
update Konto select Saldo
set Saldo = 250 from Konto
- where KtoNr = 1
where KtoNr = 1 250 3
T5 liest den Wert 100
commit 200

update Konto
commit 250 set Saldo = 100+100
where KtoNr = 1

commit 200

update Konto
set Saldo = 100+50
where KtoNr = 1

commit 150

Advanced .
DataBase SharkSQL - the database project 8
BURGER Technology

DBMS & Lost Update Prevention Eﬁl

sat MysQL/
IIIIIIIIIIIIIII!!!!!!!!!II|IIIII!=!EIIII||HHHHHHHHHHHI|IHHH!H%HHHHII||HHHH%IHHHH!I‘II!!!I!!!!I'IIHHIHHHHHH!II
Read
Uncommitted

Most RDBMS show the Lost Update phenomenon with isolation level READ
COMMITTED but not because it is a consequence of the SQL standard
definitions, but because these DBMS have no mechanism implemented to

prevent lost updates.

Read
Committed

Repeatable
Read

COO

Serializable

Advanced .
DataBase SharkSQL — the database project 9
BURGER Technology

-

SERIALIZEABLE guarantees data consistency FJJ&

SQL Standard

“The execution of concurrent SQL-transactions at isolation level
SERIALIZABLE is guaranteed to be serializable. A serializable
execution is defined to be an execution of the operations of
concurrently executing SQL-transactions that produces the same
effect as some serial execution of those same SQL-transactions. A
serial execution is one in which each SQL-transaction executes to
completion before the next SQL-transaction begins.”

’ Advanced .
DataBase SharkSQL - the database project 10
BURGER Technology

SERIALIZEABLE guarantees data consistency

Simple example; initial values of {X=10, Y=20}
!l [12

m set transaction isolation level serializable; set tfransaction isolation level serializable;

update Y = 50
commit;
n fetch Y
- <Any other statements>
u commit

Due to the SQL Standard T1 may fetch either:
. {X=10, Y=20}
. {X=10, Y=50}

From the application’s perspective the only valid result set of Tl
should be {X=10, Y= 50} since T2 updated Y and committed the
update before T1 has fetched Y. Otherwise the application would
process outdated data.

Advanced .
DataBase SharkSQL - the database project 11
BURGER Technology

@]
SERIALIZEABLE guarantees data consistency [t/f

It depends on whether strict serialization is supported

Pessimistic concurrency control

Record/Page locking; implicit time ordering
Strict Serialization (i.e. Oracle/RDB)

Optimistic concurrency control

Basic assumption = no concurrency conflicts; (almost) no locking

Concurrency conflicts are typically check during the COMMIT phase
If any conflicts are detected the transaction fails and it is rolled back

In principle strict serialization is also possible with optimistic
concurrency control; requires some sort of timestamp/record
version maintenance; if the isolation level SERIALIZABLE is
implemented based on transaction snapshotting, strict serialization
is usually not supported.

My personal advice: Read the documentation of the DBMS you are
using very carefully and thoroughly.

’ Advanced .
DataBase SharkSQL - the database project 12
BURGER Technology

3T
’ A
Optimistic Concurrency Control - the superior concept? H

Optimistic concurrency control

Ongoing transaction:
(almost) no locking; no (or few) deadlocks; parallel execution
Commit phase:

Concurrency issue check; requires to some extend (depends on the isolation level)
serialization among the transactions

Concurrency issue detected
Transaction fails
Transaction has to be restarted by the caller

Pessimistic concurrency control

Ongoing transaction:

All resources are locked in the mode required by the SQL statement; blocking
conditions and deadlocks are very likely when concurrency contention is high; this
limits parallel execution

Implicit chronological statement ordering
Commit phase:
Transaction will not fail due to commit to concurrency issues; no additional logic

’ Advanced .
DataBase SharkSQL - the database project 13
BURGER Technology

)
| A
Optimistic Concurrency Control - the superior concept? H

It depends on the concurrency contention:

No or low concurrency contention)
High concurrency contention R

“Real world” OLTP scenario:

Some data areas shows high concurrency contention; some others have almost
no concurrency contention

A DBMS typically provides either of the concurrency control
models. Examples:

Optimistic: PostgreSQL
Pessimistic: Oracle/RDB, MySQL/MariaDB

Only few DBMS support both (solidDB, SQL Server)

SharkSQL supports both Concurrency Control modes

Table property; tables with different concurrency control modes may co-exist
within a schema/database; can be dynamically re-defined

’ Advanced .
DataBase SharkSQL - the database project 14
BURGER Technology

)
Usability — what makes a DBMS easy to use -+

The hurdles to working with a DBMS must be as low
as possible, even for newcomers. This includes:

DBMS must provide out-of-the-box reasonable
performance

no expert know-how required to adjust system settings (mostly memory
settings)

Only basic SQL know-how must be sufficient to create and configure DB
objects (i.e. CREATE DATABASE)

Intuitively structured and consistent CLI

Consistent method to navigate through all DB objects (i.e. Oracle/RDB)
No offline utilities required to manage the DBMS environment
Startup/shutdown the environment
Backup/restore
Task scheduling

’ Advanced .
DataBase SharkSQL - the database project 15
BURGER Technology

Easy configuration —an example

Oracle/RDB

SharkSQL

create database filename disk$db3:[rdb.mydb]mydb
number of cluster nodes 1
number of users 1024
buffer size is 32 blocks
number of buffer 250
global buffers are enabled
(number is 1000000, user limit 1024, page transfer via memory, large memory is enabled)
create storage area pgbench
allocation is 65536 pages
extent is 32769 pages
page format is uniform
page size is 16 blocks
filename disk$db3:[rdb.mydb]mydb_pgbench
locking is row level;
disconnect all;
alter database filename diskSdb3:[rdb.mydb]mydb
shared memory is system
notify is enabled
row cache is enabled
snapshot is enabled
journal is enabled (fast commit is enabled)
add journal mydb_aij1 filename diskSdb3:[rdb.mydb]mydb_aij1l
allocation is 204800 blocks
extent is 204800 blocks;
attach 'file DISKSDB3:[RDB.MYDB]MYDB.RDB';
create table accounts (
aid integer primary key,
bid integer,
abalance integer,
filler character(84)
);
create storage map map_accounts for ACCOUNTS store in PGBENCH disable compression;
create unique index aid on ACCOUNTS (aid asc) type is sorted disable compression store in PGBENCH;

create database mydb default directory diskSdb3:[sharksqgl.mydb];
create table accounts (

aid integer primary key,

bid integer,

abalance integer,

filler varchar(84)
) allocation size 100;

SharkSQL — the database project

’ Advanced
DataBase
BURGER Technology

16

Intuitive CLI

SharksQL:

CATALOG = Database CATALOG = Database
SHOW DATABASES;
SHOW DATABASE <db-name>;

_TABI.E _TABLE
SHOW SCHEMAS; Triggers Triggers
SHOW SCHEMA <schema-name>; o s
SHOW TABLES;

SHOW TABLE <table-name>;
SHOW INDEX ... ON <table-name>;

|
Sequences Sequences
MariaDB:
SHOW DATABASES;
SHOW SCHEMAS;
SELECT * FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME like ‘<schema-name>;
SHOW TABLES;

SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME like ‘<table-name>;

SELECT * FROM INFORMATION_SCHEMACOLUMNS WHERE TABLE_NAME like ‘<table-name>;

SELECT * FROM INFORMATION_SCHEMA.TABLES_CONSTRAINTS WHERE TABLE_NAME like ‘<table-name>;
SELECT * FROM INFORMATION_SCHEMA.STATISTICS WHERE TABLE_NAME = ‘<table-name>"';

SELECT * FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME like ‘<table-name>;

Advanced .
DataBase SharkSQL - the database project
BURGER Technology

17

SharkSQL SHOW command

£ ymsTM2 - m] X
L] (] Shark5QL> show table accounts; -
[]
P rI n C I p I e S ° Table "ACCOUNIS' in schema '"PGBENCH.PGBENCH':
Description: -—
Revision: 1
: : Default Character Set: UNSBECIFIED
* Full information about the St
AutoCommit: Ho
Auto-Increment: Ho
. Caching enabled: Yes
O b e Ct re u e Ste d Concurrency control: Pessimistic
Row Compression: Yes
Low Limit: 0 [%]
- - . Data Encryption: ¥No
e Brief information about all
Table Space free: 47 [MB]
Min. Partition Size: 100 [MB]
Partition Extend Size: 100 [MB]
. . Page Size: 8 [kB]
associated and/or child DB Sowmne
Store clause: PGBENCH
Section clause:
] Partition clause:
0 b eCtS Wumber of Sections: 1
J Partitions/Section: 1
Compute Signature: No
Column Name Data Type Description
aid int32
bid int32
abalance int32
P SharksQl filler varchar (24)
CHARSET UNSPECIFIED COLLATE BINERY

SharkSQL> show database mydb;

SHARKSOL database: MYDB Column Name CharSet Collation
Access Host- LocalHost filler UNSPECTFIED BINERY
Description: —

Create version: Vs 'ACCOUNTS' indices
Root File: C:\MYDB\MYDB.DBR
LBy Inn=EEaegs ESvGILE Index Index Type Description
Default Character Set: UNSPECIFIED T e e T
Collate: BINARY
— e ATD B-TREE | BRIMKEY (none)
World Privileges: 0 BID B-TREE | DUF| LCL {none)
A1J Directory: C:\MYDB
enabled: Yes 'ACCOUNTS" constraints
Intial/Extend Size: 25€ [MB]
Default Snapshot Directory: C:\MYDB Hame Constraints
Default Backup Directory: SHRERKSQLFECK
Connection limit: 16334
Current connections: 1 AID FRIMARY KEY (aid)
Open mode: automatic DEFERRABLE INITIALLY IMMEDIATE
Node Limit: unlimited
Current Backup Index: 0 "ACCOUNTS' storage map
Last valid Backup Index: 0
Full Backup requized: es Storage Area Section Encrypted Constraint Size/Free [MB]

Schemas in database: MYDE Partitions
INFORMATION SCHEMA Information schema PGBENCH 0 o - 868/47
MYDB MYDB DB default schema [0}

HE D S pmeEmes, s==- Ok, 0 row processed, (0.050 sec). v

’ Advanced
DataBase
BURGER Technology

SharkSQL — the database project

18

Distributed & Cross-Database transactions H)\

A distributed transaction operates on data that is located in 2 or more
databases managed on different nodes

If the databases are located on the same node, such transactions are called
Cross-Database transactions

Side note: PostgreSQL supports distributed but no cross-database
transactions

Nothing new; other DBMS like Oracle and PostgreSQL support distributed
transaction

Vehicle to access remote data are so called federations or database links

DB links have to be configured manually
From a client point of view a federation is a static method

Access to linked remote databases is always limited to some extent. Typically,
only DML statements can be executed.

Particular attention has to be payed to security when a DB link is configured. DB
links bear the risk of piggy-back security holes.

’ Advanced .
DataBase SharkSQL - the database project 19
BURGER Technology

Configuration example PostgreSQL:
DB-Link via Foreign Data Wrapper

-

i

1) Create required objects on OMEGA to access remote tables
e SALES.PAYMENTS on ALPHAO0O01
e SALES.ACCOUNTS on ALPHA002

CREATE SERVER alpha FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host ‘alpha001’, dname ‘sales’)
CREATE SERVER beta FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host ‘alpha002’, dname ‘sales’)
CREATE USER MAPPING FOR this_user SERVER alpha (user ‘postgres’, password ‘fdw_password’);
CREATE USER MAPPING FOR this_user SERVER beta (user ‘postgres’, password ‘fdw_password’);
IMPORT FOREIGN SCHEMA public LIMIT TO (payments) FROM SERVER alpha INTO public;

IMPORT FOREIGN SCHEMA public LIMIT TO (accounts) FROM SERVER beta INTO public;

2) No we can execute Query:

SELECT pm.type, acct.balance FROM accounts acct
LEFT JOIN payment_methods pm ON pm.act_id = acct.id

WHERE acct.balance > 0; ALPHAOOZ

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

20

' link i
[]
PostgreSQL: Using dblin
We can execute the query immediately:
SELECT pm.type, acct.balance FROM
dblink (‘host=alpha001 user=postgres password=fwd_password dbname=sales’, ‘select balance, id from sales where balance > 0’)
AS acct(balance integer, id integer)
LEFT JOIN
dblink (‘host=alpha002 user=postgres password=fwd_password dbname=sales’, ‘select type, act_id from sales’)
AS pm(type varchar(255), id integer)
ON pm.act_id = acct.id;
Client
ALPHAO002
w,)g::;g:g: SharkSQL - the database project 21
BURGER Technology

SharkSQL GRID access

Direct connection:
CONNECT TO sales@alpha001 USER system PASSWORD <password>;
CONNECT TO sales@alpha002 USER system PASSWORD <password>;
SELECT pm.type, acct.balance FROM alpha001.sales.accounts acct
LEFT JOIN alpha002.sales.payment_methods pm ON pm.act_id = acct.id
WHERE acct.balance > 0;

SharkSQL
istribute DB engine

-"1 \"7‘1 (—-'j

ALPHAO01 OMEGA ALPHAO002

Connect via OMEGA:

SET DEFAULT CONNECTION omega;
CONNECT TO sales@alpha001 [USER system PASSWORD <password>];
CONNECT TO sales@alpha002 [USER system PASSWORD <password>];
SELECT pm.type, acct.balance FROM alpha001.sales.accounts acct
LEFT JOIN alpha002.sales.payment_methods pm ON pm.act_id = acct.id
WHERE acct.balance > 0;

SharkSQL
Distribute|DB engine

Advanced .
DataBase SharkSQL - the database project 22
BURGER Technology

SharkSQL GRID access

fri

SharkSQL DB engine is a distributed DB engine

Remote databases can be accessed directly from the client or via an
access server

No configuration effort; SQL CONNECT statement only

No risk of piggy-back security holes; credential provided by the client are
used to login to the remote DBMS

No statement limitation; a user can execute all DML and DDL statements
on the remote DBMS for which he is privileged.

SQL statements remain syntactically strictly following the language
definitions of the SQL standard

The Client has always a “local” view on all connected
DBs regardless if the are locally attached or remote

’ Advanced .
DataBase SharkSQL - the database project 23
BURGER Technology

/72
)./_

SharkSQL GRID access

Highly secure (“unhackable”) network encryption

Encryption key changes after each network packet

Peers calculate the new encryption key independently based on the
context of the last packet and the old encryption key value

The value of the new encryption key also determines whether the
packet content:

Will be compressed

Content is reordered within the packet
The peers independently calculate the initial key using a quantum-
mechanical eigenvalue equation; the boundary conditions for this
equation and the harmonic overtone selected from the solution set are
determined by the content of the client's WHOAMI message; the
selected harmonic overtone is the input for key generation.

’ Advanced .
DataBase SharkSQL - the database project 24
BURGER Technology

]
Performance — Benchmark-Test £

OpenVMS

VS| OpenVMS V8.4-2L1 / VSI OpenVMS V8.4-2L3

HPE rx2800 i4 (Intel Itanium 9540 8-core/2.13GHz/24.0MB)
Storage: EVA4 4400

Windows

Windows 10 Pro, Version 21H2, Build 19044.2604

HP EliteBook 840 G5, Intel® Core™ i7-8550U CPU @ 1.80GHZ 1.99
16GB RAM

512 GB PCSle® NVMe™ M.2 SSD

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

25

Performance — Benchmark-Test

MariaDB
OpenVMS: MariaDB 5.5-63
Windows: MariaDB 10.11.2

Crash save configuration:
innodb_flush_log _at_trx_commit=1

sync_binlog =1
PostgreSQL:
OpenVMS: PostgreSQL 13.3
Windows: PostgreSQL 15.2
Memory adjustments:
shared buffers = 8GB (default: 128 MB)
work_mem = 64MB (default: 4 MB)

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

26

@]
Performance — Benchmark-Test 2
Oracle/RDB
OpenVMS: Oracle Rdb SQL V7.3-320
SharkSQL
OpenVMS: SharkSQL V5.0 (pre-release)
Global cache size: 32 GB (Installation default)
Windows: SharkSQL V5.0 (pre-release)
Global cache size: 6 GB (Installation default: 8GB)

’ Advanced .
DataBase SharkSQL - the database project 27
BURGER Technology

31
Performance b+

PGBENCH Test (TPC-C like; standard PostgreSQL test)

Easy to implement and the ultimate "killer" test for
concurrency issues:

Updating 3 different tables (50, 500, 5.000.000 records)
1 Insert

1 Select

\set aid random(1, 100000 * :scale)

\set bid random(1, 1 * :scale)

\set tid random(1, 10 * :scale)

\set delta random(-5000, 5000)

BEGIN;

UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

UPDATE pgbench_tellers SET thalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

’ Advanced .
DataBase SharkSQL - the database project 28
BURGER Technology

Performance - PGBENCH

1. Test, default isolation levels used, OpenVMS and Windows
Oracle/RDB: SERIALIZABLE

MariaDB: REPEATABLE READ
PostgreSQL*: READ COMMITTED
SharkSQL: READ COMMITTED

* PostgreSQL PGBENCH test with READ COMMITTED succeeds but the data is
corrupted; PostgreSQL isolation level READ COMMITTED does not prevent lost
updates; without lost update prevention this test setup results in lost updates.

2. Test, using lost update prevention isolation level on Windows

MariaDB: REPEATABLE READ
PostgreSQL: REPEATABLE READ
SharkSQL: READ COMMITTED

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

29

PGBENCH — OpenVMS Read-Write results

Default isolation levels used for all DBMS
tested

RW pgbench (TPC-B like test)

5.000,00

w
v v

4.500,00
4.000,00
3.500,00
3.000,00
& 2.500,00
2.000,00
1.500,00 ¥ B -

w
w
w

1.000.,00 - T

U OATHA A TEA IR
0,00 SES. SN, _:_L_:_L_:_!__:_ SESE SuSl SR SNl Sal _::l
8 12 16 24 32 48 64 96

1 2 4)
CONCURRENT THREADS

® TPS SharkSQL ®TPS Oracle/RDB ~ ®TPS MariaDB ~ mTPS PostgreSQL

Advanced .
DataBase SharkSQL - the database project 30
BURGER Technology

PGBENCH — Windows 10 Read-Write results

Default isolation levels used for all DBMS
tested

10.000,00
9.000,00
8.000,00
7.000,00
6.000,00
5.000,00
4.000,00
3.000,00
2.000,00

1.000,00 I

0.00

2 4) 8

® TPS PostgreSQL (Read Committed) ® TPS MariaDB ® TPS SharkSQL

Advanced .
DataBase SharkSQL - the database project 31
BURGER Technology

PGBENCH — Windows 10 Read-Write results

P4 Lost update preventing isolation level

10000
2000
8000
7000
6000
5000 -
4000

K10/00)
2000
1000 l
12 16 2

4 96

ETPS PostgreSQL (Read Committed) ™ TPS MariaDB ®TPS SharkSQL II
0 IIK L3
1 2

W TPS PostgreSQL (Repeatable Read)
®TPS PostgreSQL (Read Committed)

4 6 8 12 16 24 32 48 64 96

Advanced .
DataBase SharkSQL - the database project 32
BURGER Technology

PGBENCH — OpenVMS Read-Only results

Default isolation levels used for all DBMS
tested

RO pgbench (TPC-B like test)

200.000,00
180.000,00
160.000,00
140.000,00
120.000,00

& 100.000,00

80.000,00
60.000,00
40.000,00
20.000,00

0,00 —m—m———— SEN., SES. SRS, SESm SESE SESE SESE SESm SESm SES

1 2 4) 8 12 16 24 32 48 64 96
CONCURRENT THREADS

®TPS SharkSQL ®TPS Oracle/RDB ~ ®TPS MariacDB ~ mTPS PostgreSQL

Advanced .
DataBase SharkSQL - the database project 33
BURGER Technology

PGBENCH — Windows Read-Only results

Default isolation levels used for all DBMS
tested

350.000,00
300.000,00
250.000,00
200.000,00
150.000,00
100.000,00

50.000,00

48 64 96

2 4 6 8 12 16 24 32

® TPS PostgreSQL (Read Committed) ® TPS MariaDB ® TPS SharkSQL

Advanced .
DataBase SharkSQL - the database project 34
BURGER Technology

Single Stream — Bulk insert & update

Test table definition:

CREATE TABLE test_table
(iindex integer primary key,
gTime timestamp,
sName character(255));

(Oracle/RDB only)
CREATE UNIQUE INDEX ilndex on test_table (ilndex asc) TYPE IS SORTED ENABLE COMPRESSION STORE IN test;

Insert:

TRUNCATE TABLE test table;
INSERT INTO text_table select * from load table;

Update (Oracle/RDB, PostgrSQL, SharkSQL): | Update (MariaDB):
UPDATE UPDATE
set = |localtimestamp, set = |localtimestamp,
= cast(as char(16)) || '. Entry’; = concat(cast(as char(16)),". Entry');
UPDATE UPDATE
set = localtimestamp, set = localtimestamp,
= [] " (manually)’; = concat ,' (manually)");

Advanced .
DataBase SharkSQL - the database project 35
BURGER Technology

Single Stream — Bulk insert & update @ﬁ’!

VSI OpenVMS V8.4-213
HPE rx2800 i4 (Intel Itanium 9540 8-core/2.13GHz/24.0MB)

Insert 2.000.000 rows Update 2.000.000 rows
200,00 m 160,00 “
150,00 120,00 m
g 100,00 g 80,00
50,00 ‘ 40,00 ‘
0,00 0,00
Runtime [sec] Runtime [sec]
Astitel Astitel
B SharkSQL Oracle/RDB PostgreSQL mMariaDB E SharkSQL Oracle/RDB PostgreSQL m®MariaDB

Advanced .
DataBase SharkSQL - the database project 36
BURGER Technology

Single Stream — Bulk insert & update @’!

Windows 10 Pro, Version 21H2, Build 19044.2604
HP EliteBook 840 G5, Intel® Core™ i7-8550U CPU @ 1.80GHZ 1.99

Insert 2.000.000 rows Update 2.000.000 rows
-
9,00 16,00
8.00 14,00
7,00 12,00
B 6,00 __ 10,00
WP g s
3.00 6,00
2,00 4,00
1,00 2,00
0,00 0,00
Runtime [sec] Runtime [sec]
BSharkSQL PostgreSQL mMariaDB B SharkSQL PostgreSQL mMariaDB

Advanced .
DataBase SharkSQL - the database project 37
BURGER Technology

Performance — Grouping and sorting

1. Test

SELECT COUNT(distinct iNbr) from test_sort;

Table definition (2.000.000 records, 10.000 distinct iNbr values):

CREATE TABLE test_sort
(ilndex integer primary key,
gTime timestamp,
sName varchar(255)
iNbr bigint);

(Oracle/RDB only)
CREATE UNIQUE INDEX ilndex on test_sort (ilndex asc) TYPE IS SORTED ENABLE COMPRESSION STORE IN test;

2. Test

SELECT iNbr, COUNT(sName) from test_sort 2 GROUP BY iNbr HAVING count(sName) > 3;

Table definition (2.000.000 records, 1.223.500 distinct iNbr values):

CREATE TABLE test_sort_2
(ilndex integer primary key,
gTime timestamp,
sName varchar(255)
iNbr bigint);

(Oracle/RDB only)
CREATE UNIQUE INDEX ilndex on test_sort_2 (ilndex asc) TYPE IS SORTED ENABLE COMPRESSION STORE IN test;

Advanced .
DataBase SharkSQL — the database project
BURGER Technology

38

SELECT COUNT(distinct iNbr) from test_sort;

800
700
600

— 500

2 400

= 300
200
100

Advanced
DataBase
BURGER Technology

Window 10 Pro

Runtime

V3l OpenVMS V8.4-21.3

. At

9

8
BSharkSQL Z B SharkSQL

PostgreSQL g 5 Oracle/RDB

B MariaDB = 4 B MariaDB

3

2

1

0

Runfime

SharkSQL — the database project 39

SELECT iNbr, COUNT(sName) from test _sort 2 GROUP BY iNbr ...

25

20

[sec]

Advanced
DataBase
BURGER Technology

Window 10 Pro

Runtime

500
450
400
350

B SharkSQL 300

PostgreSQL
B MariaDB 200
150

100

50

[sec]
N
(3]
(@]

SharkSQL — the database project

VSI OpenVMS V8.4-2L.3

Runtime

B SharkSQL
Oracle/RDB
mMariaDB

40

x[!
/)

SharkSQL Connectors/Interfaces

Embedded SQL (initial release: C only)

CVM pre-compiler
comparable to Oracle/RDB SQL Module Processor

SSTR (Secure Service and Transaction Router)

Full MySQL/MariaDB wire protocol support

Any connector available for MySQL/MariaDB can be used to access

SharkSQL:
« JDBC e C++driver * Ruby
e (ODBC e PHP e Go
e ADO.NET e Perl e Rust

Native connectors (especially ODBC and JDBC) will be provided

’ Advanced .
DataBase SharkSQL - the database project 41
BURGER Technology

SharkSQL Roadmap b

Release plan:

Field test release mid2023
Production release end 2023

Support Versions

OpenVMS |IA64

VS| OpenVMS V8.4-2L1 and higher
HPE OpenVMS V8.4 (can be backup-ported customer on request)

OpenVMS x86
VSI OpenVMS 9.2 and higher

Windows

Windows 10/11
Windows Server 2016/2019/2022

’ Advanced .
DataBase SharkSQL - the database project 42
BURGER Technology

SharkSQL Roadmap

x[!

Development plan (2024 — 2025)

Linux port
Database “shadowing”/database replication

Adding new SQL features

GROUPING SETS, CUBE and ROLLUP

Enhanced Window functions (currently only basic features have been
implemented).

RMS file mapping (OpenVMS only)
Native Connectors (ODBC, JDBC etc.)
MySQL/MariaDB server integration

’ Advanced .
DataBase SharkSQL - the database project 43
BURGER Technology

Terms & Conditions

SharkSQL will be distributed a shareware
Everyone can use it for free

Customers will be charged only for

Support
Professional Service (Consulting and Training)

For more information please contact me directly or
send a mail to: sharksal@wdb-tech.com

Thank you for your attention

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

44

Questions

Advanced
DataBase
BURGER Technology

45

Backup/Additional Info Slides

Architecture/Components t

SharksaL cU CVM Run SRS ODBC STR Agent Interfaces
(Remote access)
CVM — CSQL Virtual Machine
CVM Heap / CVM Code SQ L Execution SQLQuery .
Execution Stack Interpreter Stack Engine SR E L]
Process Area
DB Fivate Area
Encrytion engine Query Cache/ Optimizer
Private Data Page Cache DB Access Structures
System Data Cache Area DB Global Area System Area
SHARK$CACHE
Cache-Control DB Structure DB Control RUJMProcess SHARKSMONITOR
Database Page Cache (0,5 — 1024 GB)
Structures Map Structures Map
Controls» <Control

DB1 Reference
DB1 Reference

DBn Reference

NS ————

oono
ooo
ooo
oono
ooo
ooo
oono
ooo
ooo

Physical Layer

RUJ Pool

Storage Areas Snapshot Files After Image Jburnals)) SHARKDB
2048 clusterweit — up 10127 Disks

’ Advanced
DataBase
BURGER Technology

RUJ user mapping

2) RUJ Slot assigned (i.e. Slot 2)

1) RUJ Request———

RUJ Pool

Advanced R
m DataBase SharkSQL - the database project 48
BURGER Technology

Table Partitioning &?

/ Sforage Areas -| 8 \

Sections 1...n

Table

Max. Partitions = 8 StgAreas * N Sections * 32 Section-Partitions

Advanced
DataBase
BURGER Technology

SharkSQL — the database project 49

Task Scheduler

Automates periodic tasks

Up to 64 tasks can be executed in parallel

Configuration items
Cmd to execute:

Cmd line scripts

Host programs

CSQL programs
Start time

Schedule
Yearly
Monthly
Weekly
Daily
Free definable time interval
Single shot

’ Advanced .
DataBase SharkSQL — the database project
BURGER Technology

50

Task Scheduler

e |
“ /7_‘
>

Schedule exclude list [optional]
i.e. schedule DAILY exclude (Sa, So)
means — run daily but not on Saturday and Sunday
Execution node list [optional]:
If not defined — task executed on all cluster members
1. node in the list defines the primary execution node
2. —n. node = standby execution node

If the task scheduler is running on the primary node it is executed on this
node

If not, the task is executed on one of the standby nodes defined in order of
there appearance in the execution node list.

’ Advanced .
DataBase SharkSQL - the database project 51
BURGER Technology

Backup/Restore

DB backup
Schema backup

Backup options:

Online backup:
full
incremental
no data
compressed

Offline backup
full
incremental
no data
compressed
physical

SharkSQL — the database project

52

il
Backup/Restore 3

Only backup to disk supported
PURGE clause

On success:
all AlJs except the Al of the current day are automatically purged
Locally stored backup sets are purged if the backup is a full backup

a backup set consists of a full backup plus all adjacent
incremental backups

’ Advanced .
DataBase SharkSQL - the database project 53
BURGER Technology

-
Backup/Restore £3

Restore
RESTORE DATABASE <DB name>
Searches in SHARKSBCK directory for the most recent valid DB backup set
RESTORE SCHEMA <Schema name>

Searches in SHARKSBCK directory and the DB backup default directory for
the most recent valid SCHEMA backup set

Automatically restores data from existing Alls
Except the NO AlJ clause is specified with the RESTORE command
Index build can be suppressed to speed up restore

NO INDEX clause must be specified

Indices must be manually build with the ALTER TABLE ... BUILD INDEX
command

’ Advanced .
DataBase SharkSQL - the database project 54
BURGER Technology

Results - OpenVMS H

Systems:
ES47 2P/1C 1GHz, 2 GB Memory (2005) HPE OpenVMS V8.4 AXP
rx4640 1P/1C 1.3 GHz, 2GB Memory (2006) HPE OpenVMS V8.4 164
2x EVA4400 (2011)

DB writers:

3—>2o0nES47,1 on rx4640

1 GB cluster-wide SharkSQL DB cache
Overall performance:

3600 Terminals

Ticket transactions / sec — long term load (> 30 min) ~ 1200 Tps
Ticket transactions / sec — peak load (30 — 60 sec) > 1500 Tps
1000 concurrent Terminal/User Login requests 3-5sec
DB-recovery time after crash of a cluster member ~ 1 sec
processing high load (~ 400 Tps)

’ Advanced .
DataBase SharkSQL - the database project 55
BURGER Technology

|
Results - OpenVMS oeh

System:

Rx2800 i4 4P/16C (2016) VS| OpenVMS V8.4-2L1
2x EVA4400 (2011)

DB writers:
8
Performance:
1800 Terminals

Ticket transactions / sec — long term load (> 30 min) ~ 2500 Tps
Ticket transactions / sec — peak load (30 — 60 sec) ~ 2500 Tps
1000 concurrent Terminal/User Login requests < 3 sec

DB-recovery time after crash of a DB writer process (load | <1 sec
~ 400 Tps)

Note: I/O bound, overall CPU load ~120% - just a bit more than 1 Core
mg%%%%y SharkSQL - the database project 56

