
Seƫng up an OpenVMS Virtual Machine on VMware ESXi
Hints & kinks to avoid the most common piƞalls when configuring an

OpenVMS VM within an ESXi environment

Thilo Lauer, Teracloud GmbH March 21st, 2023

VMware ESXi is a powerful, highly configurable (and therefore potenƟally complicated), type-
1 hypervisor. Although preparing a virtual machine (VM) in general, may be a straighƞorward
exercise, some special requirements of the OpenVMS boot manager, such as the use of the EFI
shell and the required need for serial line setup, jusƟfy a closer look into certain aspects of
performing a proper configuraƟon and a successful setup of a working OpenVMS VM environ-
ment.

This document has been created as a companion guide to the demonstraƟon session held in
Eindhoven at the OpenVMS Forum on March 7th, 2023. It is not intended to serve as a self-
contained, complete descripƟon on how to setup an OpenVMS virtual machine. The reader is
likely to want to consult the VSI OpenVMS installaƟon Guide, the VSI Boot Manager User Guide
and, of course, the VMware documentaƟon for ESXi.

Topic 1 – Boot configuraƟon / Firmware

An OpenVMS system relies on funcƟons being provided by the EFI layer of the underlying hard-
ware. Make sure to select “EFI” as the acƟve Firmware in the “Boot opƟons” entry in the “VM
OpƟons tab of the “Edit seƫngs” window in the ESXi Web interface. Failure to do so will result
in a black-and-white console window running BIOS with the classic progress bar at the boƩom,
trying to perform a network boot since BIOS didn’t find any bootable device.

Topic 2 – ConfiguraƟon of the serial line connecƟon

To manage the boot process, to get access to the EFI shell, and to install OpenVMS, a serial line
connecƟon to the VM is required. This “serial line” can be provided by several alternaƟves:

 a true serial port,
 a named pipe, which only works within the same hypervisor, i.e., from an exisƟng VM

running a terminal emulator to the new OpenVMS VM environment,
 a TCP-based connecƟon to any telnet client that has network access to the hypervisor.

By far the most common opƟon one might want to use is the TCP-based setup. Several steps
are needed to establish a working connecƟon.

First, the VM needs to be configured to use a TCP-based serial line. The following picture taken
from the VM’s edit window shows an example configuraƟon.

Watch out for the correct syntax of the Port URI: it needs to have a unique port number
appended to the IP address of the ESXi host. In this case it is port 10015. This value must be
unique with regard to other exisƟng or planned OpenVMS VM instances to disƟnguish the
parƟcular VM one wants to connect to later on (and not conflict with any services which may
be running on the host machine).

The correct seƫng for the counterpart on the other end of the serial line connecƟon, your
terminal emulator, is shown in the following picture with using KiƩy, a follow-on product of
the widespread puƩy tool. While the host name to use is the IP address of the ESXi hypervisor,
the port name specified in the “Port” field is the one that was assigned in the above step.

With these seƫngs, the terminal emulator should – in theory - be able to establish a connec-
Ɵon to the VM. However, the integrated ESXi firewall might sƟll block access via a remote serial
port.

Topic 3 – ConfiguraƟon of the ESXi firewall

Even if all of the above seƫngs have been applied correctly, access to the serial port of the VM
might sƟll be blocked. In this case the configuraƟon of the ESXi firewall needs to be checked.

These steps are needed to control – and modify, if needed – the ESXi firewall setup:

 check the exisƟng firewall rules regarding remote serial ports

esxcli network firewall ruleset rule list -r remoteSerialPort
Ruleset Direction Protocol Port Type Port Begin Port End
---------------- --------- -------- --------- ---------- --------
remoteSerialPort Outbound TCP Dst 0 65535
remoteSerialPort Inbound TCP Dst 23 23
remoteSerialPort Inbound TCP Dst 1024 65535

The line of interest is the last one, controlling Inbound serial port connecƟons. This
example shows the default seƫng of allowing port numbers in the range of 1024 –
65535.

 However, this rule, while already being defined, might not be enabled. To check for
that, use the following command (same as above, but without the keyword rule):

esxcli network firewall ruleset list -r remoteSerialPort
Name Enabled
---------------- -------
remoteSerialPort false

In this example, the remoteSerialPort rule is indeed not acƟvated yet, and access there-
fore will be blocked. To acƟvate this rule, use the command:

esxcli network firewall ruleset set -r remoteSerialPort -e true

 Use this command to check if the firewall is acƟve at all:

esxcli network firewall get

The following command will enable the firewall:

esxcli network firewall set -e true

while this one will deacƟvate (disable) the firewall completely. Use this command as a
temporary troubleshooƟng method only!

esxcli network firewall set -e true

Topic 4 – Seƫng ESXi VM variables

Certain variables available within a VM’s configuraƟon file may need to be defined or adjusted
to beƩer serve the specific needs of a virtualized OpenVMS environment. Modifying or crea-
Ɵng variables is performed within a VM’s “Edit” window at the Tab “VM OpƟons”, entry
“Advanced”:

Click on the “Edit ConfiguraƟon” buƩon and the following window will appear, allowing you to
either change the values of exisƟng variables, or add new variables to the VM configuraƟon
file.

You can search for an exisƟng variable using the search box in the upper right corner, or click
on the “Add parameter” icon to actually add a new one.

The following variables might be of interest:

 efi.serialconsole.enabled = "TRUE"

This variable, when being set to TRUE, will enable remote access to UEFI over a serial
port. The default VM configuraƟon does not have this variable defined, with the effect
that any terminal I/O before the SYSBOOT stage of a VMS boot (including the iniƟal
boot from the ISO to start an installaƟon) will not be sent/received to/from a con-
nected terminal emulator, but will only be visible/accepted within the build-in Console
window of ESXi.

Once this variable is defined as shown above, access to the VM console from the very
beginning, including the EFI shell and the plaƞorm boot manager will be possible.

 efi.shell.activeByDefault = "TRUE"

VMware by default does not allow the automaƟc execuƟon of the EFI shell during a
VM boot. This is true for VMware WorkstaƟon as well as ESXi. What will happen instead
is the execuƟon of the available boot opƟons in the plaƞorm boot manager, in their
order of appearance in the boot opƟons list, unƟl an entry that results in a successful
boot is found.

To allow for the automaƟc execuƟon of the EFI shell, define the variable as shown
above.

 efi.quickBoot.enabled = "FALSE"

By default, this variable is set to “TRUE”, which results in only performing a reduced
device scan during the startup of a VM. This might result in an incorrect device dis-
covery for OpenVMS virtual machines, especially if you are adding more controllers to
your VM aŌer the iniƟal VM configuraƟon. Seƫng this variable to “FALSE” will inhibit
the quick boot and therefore will always perform a full device scan during boot.

